Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]copper(II)-picrate-dimethylformamide (1/2/4)

Ruirui Yun,^a Wei Ying,^b Baoliang Qi,^a Xuyang Fan^a and Huilu Wu^a*

^aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail: wuhuilu@163.com

Received 18 October 2008; accepted 8 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; disorder in solvent or counterion; R factor = 0.075; wR factor = 0.232; data-toparameter ratio = 12.3

In the title compound, $[Cu(C_{16}H_{14}N_4O)_2](C_6H_2N_3O_7)_2$. $4C_{3}H_{7}NO$, the Cu^{II} ion is located on a crystallographic inversion center and is coordinated in a distorted octahedral environment by four N atoms and two O atoms forming two long Cu-O bonds. One of the unique dimethylformamide solvent molecules is disordered over two sites with occupancies of 0.715 (6) and 0.285 (6). The crystal structure is stabilized by intermolecular N-H···O hydrogen bonds.

Related literature

For the analagous Zn(II) diperchlorate complex, see: Zhou & Yang (2006).

Experimental

Crystal data

 $[Cu(C_{16}H_{14}N_4O)_2](C_6H_2N_3O_7)_2$ --4C₃H₇NO $M_r = 1368.77$ Triclinic, $P\overline{1}$ a = 10.9656 (7) Å b = 12.6028 (12) Å c = 13.4100 (9) Å $\alpha = 65.746 \ (2)^{\circ}$

```
\beta = 88.629 \ (2)^{\circ}
\gamma = 65.187 \ (2)^{\circ}
V = 1508.8 (2) Å<sup>3</sup>
Z = 1
Mo K\alpha radiation
\mu = 0.46 \text{ mm}^{-1}
T = 293 (2) \text{ K}
0.28 \times 0.21 \times 0.11 \text{ mm}
```

 $R_{\rm int} = 0.078$

12429 measured reflections

5605 independent reflections

3363 reflections with $I > 2\sigma(I)$

of

Data collection

```
Rigaku R-AXIS Spider
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.883, T_{\max} = 0.952
```

Refinement

(

N

$R[F^2 > 2\sigma(F^2)] = 0.075$	H atoms treated by a mixture o
$wR(F^2) = 0.232$	independent and constrained
S = 1.01	refinement
5605 reflections	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
457 parameters	$\Delta \rho_{\rm min} = -1.09 \text{ e } \text{\AA}^{-3}$
18 restraints	

Table 1

Selected geometric parameters (Å, °).

Cu—N3 Cu—N1	1.979 (3) 1.992 (4)	Cu-O1	2.583 (3)
$V_3 - Cu - N3^i$ $V_3 - Cu - N1$ $V_3 - Cu - N1^i$ $V_1 - Cu - N1^i$ $V_3 - Cu - O1^i$	180 87.55 (15) 92.45 (15) 180 106.54 (12)	$N1-Cu-O1^{i}$ N3-Cu-O1 N1-Cu-O1 $O1^{i}-Cu-O1$	106.14 (13) 73.46 (12) 73.86 (13) 180

Symmetry code: (i) -x, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2N \cdots O6^{ii}$ $N2 - H2N \cdots O5^{ii}$	0.87(5) 0.87(5)	1.95 (4) 2.41 (5)	2.709 (5) 3.104 (6)	145 (6) 138 (6)
$N4 - H4N \cdots O9^{iii}$	0.87 (5)	1.92 (2)	2.753 (6)	162 (5)

Symmetry codes: (ii) -x + 1, -y, -z + 2; (iii) -x + 1, -y + 1, -z + 1.

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge the financial support and grant from Qing Lan Talent Engineering Funds (QL-05-03 A) of Lanzhou Jiaotong University. The Middle-Young Age Science Foundation of Gansu Province (grant No. 3YS061-A25-023,24) is also acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2715).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). RAPID-AUTO. Rigaku/MSC, The Woodlands, Texas,

USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zhou, H.-Q. & Yang, P. (2006). Huaxue Xuebao, 64, 793.

Acta Cryst. (2008). E64, m1529 [doi:10.1107/S1600536808036829]

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]copper(II)-picrate-dimethylformamide (1/2/4)

R. Yun, W. Ying, B. Qi, X. Fan and H. Wu

Comment

The asymmetric unit of the title compound consists of half of a di[1,3-bis(benzimidazol-2-yl)-2-oxopropane] copper(II) cation (Fig.1), one picrate anion and two molecules of DMF. The Cu^{II} ion is six-coordinated with a N₄O₂ ligand set. The obb (1,3-bis(benzimidazol-2-yl)-2-oxopropane) ligand acts as a tridentate donor. The coordination geometry of the Cu^{II} may be best described as distorted octahedral. This geometry is assumed by the Cu^{II} to relieve the steric crowding. The equatorial plane is occupied by four N atoms of two benzimidazolyl groups. The axial positions are occupied two O atoms. The crystal structure is stabilized by intermolecular N-H…O hydrogen bonds.

Experimental

To a stirred solution of 1,3-bis(benzimidazol-2-yl)-2-oxopropane (0.139 g, 0.5 mmol) in hot MeOH (15 ml) was added $Cu(C_6H_2N_3O_7)_2$ (0.130 g, 0.25 mmol) in MeOH (5 ml). A green crystalline product formed rapidly. The precipitate was filtered off, washed with MeOH and absolute Et₂O, and dried *in vacuo*. The dried precipitate was dissolved in DMF resulting in a green solution. The green crystals suitable for X-ray diffraction studies were obtained by ether diffusion into DMF after three days at room temperature. Yield, 0.106 g (66%). (found: C, 49.23; H, 4.37; N,18.58. Calcd. for C56H60N18O20Cu: C, 49.14; H, 4.42; N, 18.42)

Refinement

All H atoms were found in difference electron maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.93 to 0.96 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$. The H atoms bonded to N atoms were refined independently with the distance constraint of N-H = 0.86 (1)Å. One of the unique DMF solvent molecules is disorderd over two sites with refined occupancies 0.715 (6) and 0.285 (6). The minor component was refined isotropically and constrained to be geometrically similar to the major component using the SAME instruction in SHELXL (Sheldrick, 2008).

Figures

Fig. 1. The cation of the title compound showing displacement ellipsoids at the 30% probability level [symmetry code: (a) -x, -y+1, -x+1].

Bis[1,3-bis(benzimidazol-2-yl)-2-oxapropane]copper(II)-picrate-\ dimethylformamide (1/2/4)

Crystal data

$[Cu(C_{16}H_{14}N_4O)_2](C_6H_2N_3O_7)_2 \cdot 4C_3H_7NO$	Z = 1
$M_r = 1368.77$	$F_{000} = 711$
Triclinic, <i>P</i> 1	$D_{\rm x} = 1.506 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 10.9656 (7) Å	Cell parameters from 5605 reflections
b = 12.6028 (12) Å	$\theta = 3.0-25.5^{\circ}$
c = 13.4100 (9) Å	$\mu = 0.46 \text{ mm}^{-1}$
$\alpha = 65.746 \ (2)^{\circ}$	T = 293 (2) K
$\beta = 88.629 \ (2)^{\circ}$	Block, green
$\gamma = 65.187 \ (2)^{\circ}$	$0.28\times0.21\times0.11~mm$
$V = 1508.8 (2) \text{ Å}^3$	

Data collection

Rigaku R-AXIS Spider diffractometer	5605 independent reflections
Radiation source: fine-focus sealed tube	3363 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.078$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scans	$\theta_{\min} = 3.0^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.883, T_{\max} = 0.952$	$k = -15 \rightarrow 15$
12429 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.075$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.232$	$w = 1/[\sigma^2(F_o^2) + (0.1327P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{max} < 0.001$
5605 reflections	$\Delta \rho_{max} = 0.78 \text{ e } \text{\AA}^{-3}$
457 parameters	$\Delta \rho_{min} = -1.09 \text{ e } \text{\AA}^{-3}$
18 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct Extinction coefficient: 0.009 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu	0.0000	0.5000	0.5000	0.0414 (3)	
O1	0.1409 (3)	0.5704 (3)	0.5882 (2)	0.0445 (8)	
O2	-0.1106 (4)	0.1849 (4)	0.7815 (3)	0.0747 (12)	
O3	-0.0335 (4)	-0.0186 (5)	0.8206 (3)	0.0701 (11)	
O4	0.4289 (4)	-0.3097 (4)	1.0041 (3)	0.0651 (11)	
O5	0.4919 (4)	-0.2964 (4)	1.1479 (3)	0.0816 (14)	
O6	0.4312 (3)	-0.0496 (4)	1.1048 (3)	0.0577 (10)	
O7	0.3068 (6)	0.1965 (6)	1.0630 (6)	0.151 (3)	
O8	0.1451 (5)	0.3258 (4)	0.9307 (4)	0.0838 (13)	
N1	0.1462 (3)	0.3364 (4)	0.6167 (3)	0.0418 (9)	
N2	0.3339 (4)	0.2162 (4)	0.7450 (3)	0.0440 (10)	
N3	0.1426 (3)	0.5132 (4)	0.4093 (3)	0.0434 (10)	
N4	0.3198 (4)	0.5527 (5)	0.3577 (3)	0.0493 (10)	
N5	-0.0233 (4)	0.0710 (6)	0.8286 (3)	0.0577 (12)	
N6	0.4176 (4)	-0.2487 (5)	1.0584 (3)	0.0574 (12)	
N7	0.2262 (4)	0.2166 (5)	0.9921 (3)	0.0593 (12)	
C1	0.1934 (4)	0.2071 (5)	0.6375 (4)	0.0431 (11)	
C2	0.1446 (5)	0.1495 (5)	0.5898 (4)	0.0488 (12)	
H2	0.0674	0.1994	0.5343	0.059*	
C3	0.2141 (5)	0.0169 (6)	0.6273 (4)	0.0561 (13)	
Н3	0.1823	-0.0239	0.5980	0.067*	
C4	0.3320 (5)	-0.0576 (6)	0.7088 (4)	0.0586 (14)	
H4	0.3773	-0.1471	0.7319	0.070*	
C5	0.3832 (5)	-0.0029 (5)	0.7558 (4)	0.0490 (12)	
Н5	0.4619	-0.0528	0.8098	0.059*	
C6	0.3118 (4)	0.1294 (5)	0.7189 (3)	0.0436 (11)	
C7	0.2347 (4)	0.3364 (5)	0.6822 (4)	0.0433 (12)	
C8	0.2230 (4)	0.4562 (5)	0.6871 (4)	0.0468 (12)	
H8A	0.1828	0.4627	0.7508	0.056*	
H8B	0.3134	0.4503	0.6965	0.056*	
C9	0.2173 (4)	0.6123 (5)	0.5063 (4)	0.0481 (12)	
H9A	0.3083	0.5841	0.5424	0.058*	
H9B	0.1733	0.7067	0.4674	0.058*	

C10	0.2273 (4)	0.5579 (5)	0.4249 (4)	0.0464 (12)	
C11	0.2956 (4)	0.5003 (5)	0.2916 (4)	0.0498 (13)	
C12	0.3633 (5)	0.4699 (6)	0.2106 (4)	0.0596 (15)	
H12	0.4351	0.4895	0.1874	0.072*	
C13	0.3170 (5)	0.4088 (7)	0.1670 (5)	0.0686 (17)	
H13	0.3598	0.3854	0.1134	0.082*	
C14	0.2084 (5)	0.3810 (6)	0.2004 (4)	0.0662 (16)	
H14	0.1808	0.3396	0.1687	0.079*	
C15	0.1411 (5)	0.4134 (6)	0.2791 (4)	0.0564 (14)	
H15	0.0686	0.3947	0.3014	0.068*	
C16	0.1863 (4)	0.4754 (5)	0.3240 (4)	0.0444 (11)	
C17	0.0969 (4)	0.0407 (5)	0.8985 (4)	0.0480 (12)	
C18	0.2005 (5)	-0.0854 (5)	0.9460 (4)	0.0496 (13)	
H18	0.1943	-0.1493	0.9315	0.060*	
C19	0.3118 (4)	-0.1151 (5)	1.0143 (4)	0.0496 (13)	
C20	0.3311 (4)	-0.0229 (5)	1.0410 (3)	0.0456 (12)	
C21	0.2194 (5)	0.1088 (5)	0.9812 (4)	0.0472 (12)	
C22	0.1076 (4)	0.1381 (5)	0.9134 (4)	0.0488 (13)	
H22	0.0392	0.2234	0.8776	0.059*	
09	0.5277 (3)	0.3378 (4)	0.6011 (3)	0.0581 (10)	
N8	0.5913 (4)	0.1433 (4)	0.6002 (3)	0.0551 (12)	
C23	0.6860 (5)	0.0045 (5)	0.6489 (4)	0.0723 (18)	
H23A	0.7387	-0.0147	0.5950	0.087*	
H23B	0.6355	-0.0454	0.6710	0.087*	
H23C	0.7461	-0.0176	0.7128	0.087*	
C24	0.4876 (5)	0.1923 (6)	0.5051 (4)	0.0651 (16)	
H24A	0.4192	0.2779	0.4908	0.078*	
H24B	0.4459	0.1350	0.5211	0.078*	
H24C	0.5295	0.1961	0.4408	0.078*	
C25	0.6028 (5)	0.2181 (5)	0.6400 (4)	0.0551 (14)	
H25	0.6710	0.1799	0.7010	0.066*	
010	0.1119 (11)	0.8119 (10)	0.6125 (7)	0.161 (4)	0.715 (6)
N9	0.1418 (5)	0.6993 (7)	0.7922 (6)	0.068 (2)	0.715 (6)
C26	0.2883 (6)	0.6379 (9)	0.7915 (9)	0.095 (4)	0.715 (6)
H26A	0.3044	0.6737	0.7170	0.143*	0.715 (6)
H26B	0.3205	0.5457	0.8187	0.143*	0.715 (6)
H26C	0.3360	0.6541	0.8384	0.143*	0.715 (6)
C27	0.0966 (8)	0.6585 (9)	0.8996 (6)	0.081 (3)	0.715 (6)
H27A	-0.0009	0.7062	0.8888	0.122*	0.715 (6)
H27B	0.1386	0.6758	0.9493	0.122*	0.715 (6)
H27C	0.1225	0.5670	0.9309	0.122*	0.715 (6)
C28	0.0578 (8)	0.7873 (8)	0.6984 (6)	0.071 (3)	0.715 (6)
H28A	-0.0359	0.8292	0.6950	0.085*	0.715 (6)
O10A	0.3069 (17)	0.6919 (19)	0.6726 (13)	0.100*	0.285 (6)
N9A	0.1822 (19)	0.667 (3)	0.8055 (15)	0.100*	0.285 (6)
C26A	0.303 (2)	0.552 (2)	0.8825 (17)	0.100*	0.285 (6)
H26D	0.3777	0.5331	0.8430	0.150*	0.285 (6)
H26E	0.2838	0.4784	0.9143	0.150*	0.285 (6)
H26F	0.3281	0.5688	0.9406	0.150*	0.285 (6)

C27A	0.0588 (19)	0.700 (3)	0.853	3 (19)	0.100*	0.285 (6)
H27D	-0.0151	0.7755	0.797	3	0.150*	0.285 (6)
H27E	0.0739	0.7182	0.913	5	0.150*	0.285 (6)
H27F	0.0364	0.6282	0.880	6	0.150*	0.285 (6)
C28A	0.1935 (19)	0.729 (2)	0.702	9 (14)	0.100*	0.285 (6)
H28B	0.1175	0.8016	0.652	.5	0.120*	0.285 (6)
H2N	0.400 (4)	0.199 (6)	0.792	(4)	0.08 (2)*	
H4N	0.374 (5)	0.587 (5)	0.357	(4)	0.069 (18)*	
		^ 3				
Atomic displ	acement parameters	(A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.0295 (4)	0.0509 (6)	0.0466 (5)	-0.0148 (4)	0.0089 (3)	-0.0273 (4)
01	0.0332 (15)	0.051 (2)	0.0461 (17)	-0.0136 (15)	0.0083 (14)	-0.0237 (16)
O2	0.045 (2)	0.073 (3)	0.077 (3)	-0.011 (2)	-0.0100 (19)	-0.021 (2)
O3	0.058 (2)	0.081 (3)	0.070(2)	-0.029 (2)	-0.0037 (19)	-0.033 (2)
O4	0.063 (2)	0.059 (3)	0.068 (2)	-0.0146 (19)	0.0012 (18)	-0.037 (2)
O5	0.081 (3)	0.064 (3)	0.064 (2)	-0.002 (2)	-0.032 (2)	-0.026 (2)
O6	0.0501 (19)	0.060 (2)	0.0532 (19)	-0.0160 (17)	-0.0023 (16)	-0.0245 (18)
07	0.136 (5)	0.082 (4)	0.197 (6)	0.010 (3)	-0.097 (5)	-0.082 (4)
08	0.084 (3)	0.059 (3)	0.088 (3)	-0.019 (2)	-0.011 (2)	-0.026 (2)
N1	0.0338 (18)	0.051 (3)	0.047 (2)	-0.0186 (18)	0.0123 (17)	-0.027 (2)
N2	0.0352 (19)	0.054 (3)	0.044 (2)	-0.0163 (19)	0.0124 (18)	-0.027 (2)
N3	0.0315 (17)	0.054 (3)	0.045 (2)	-0.0156 (18)	0.0086 (16)	-0.027 (2)
N4	0.0325 (19)	0.058 (3)	0.059 (2)	-0.019 (2)	0.0144 (19)	-0.028 (2)
N5	0.041 (2)	0.080 (4)	0.047 (2)	-0.023 (2)	0.0048 (19)	-0.027 (3)
N6	0.052 (2)	0.059 (3)	0.057 (2)	-0.015 (2)	0.007 (2)	-0.032 (2)
N7	0.051 (2)	0.063 (3)	0.048 (2)	-0.007 (2)	-0.002 (2)	-0.030 (2)
C1	0.037 (2)	0.055 (3)	0.045 (2)	-0.021 (2)	0.015 (2)	-0.029 (2)
C2	0.043 (2)	0.058 (3)	0.048 (3)	-0.022 (2)	0.012 (2)	-0.026 (3)
C3	0.061 (3)	0.063 (4)	0.053 (3)	-0.030 (3)	0.018 (3)	-0.033 (3)
C4	0.067 (3)	0.054 (4)	0.059 (3)	-0.026(3)	0.025 (3)	-0.030 (3)
C5	0.045 (2)	0.058 (3)	0.042 (2)	-0.015 (2)	0.009 (2)	-0.028 (2)
C6	0.037 (2)	0.048 (3)	0.041 (2)	-0.013 (2)	0.013 (2)	-0.022 (2)
C7	0.0260 (19)	0.061 (3)	0.042 (2)	-0.012 (2)	0.0078 (18)	-0.030 (2)
C8	0.039 (2)	0.058 (3)	0.044 (2)	-0.017 (2)	0.002 (2)	-0.027 (2)
C9	0.035 (2)	0.059 (3)	0.053 (3)	-0.021 (2)	0.010(2)	-0.028 (3)
C10	0.031 (2)	0.058 (3)	0.053 (3)	-0.017 (2)	0.009(2)	-0.030 (2)
C11	0.036 (2)	0.057 (3)	0.049 (3)	-0.011 (2)	0.009(2)	-0.027 (3)
C12	0.043 (3)	0.073 (4)	0.062 (3)	-0.021 (3)	0.021 (2)	-0.036 (3)
C13	0.048 (3)	0.096 (5)	0.075 (3)	-0.024 (3)	0.027 (3)	-0.059 (4)
C14	0.057 (3)	0.085 (5)	0.070 (3)	-0.026 (3)	0.021 (3)	-0.052 (3)
C15	0.041 (2)	0.070 (4)	0.062 (3)	-0.021 (3)	0.014 (2)	-0.038 (3)
C16	0.031 (2)	0.053 (3)	0.047 (2)	-0.012 (2)	0.0093 (19)	-0.027 (2)
C17	0.038 (2)	0.059 (3)	0.043 (2)	-0.018 (2)	0.008 (2)	-0.023 (2)
C18	0.046 (3)	0.064 (4)	0.041 (2)	-0.027 (3)	0.014 (2)	-0.023 (2)
C19	0.040 (2)	0.057 (3)	0.043 (2)	-0.010 (2)	0.005 (2)	-0.026 (2)
C20	0.041 (2)	0.052 (3)	0.033 (2)	-0.013 (2)	0.008 (2)	-0.017 (2)

C21	0.047 (3)	0.052 (3)	0.043 (2)	-0.017 (2)	0.016 (2)	-0.027 (2)
C22	0.036 (2)	0.058 (3)	0.041 (2)	-0.010 (2)	0.007 (2)	-0.022 (2)
O9	0.0464 (18)	0.070 (3)	0.062 (2)	-0.0275 (19)	0.0155 (17)	-0.032 (2)
N8	0.038 (2)	0.067 (3)	0.052 (2)	-0.014 (2)	0.0108 (18)	-0.028 (2)
C23	0.055 (3)	0.072 (4)	0.070 (3)	-0.009 (3)	0.013 (3)	-0.034 (3)
C24	0.056 (3)	0.077 (4)	0.053 (3)	-0.018 (3)	0.003 (3)	-0.032 (3)
C25	0.038 (2)	0.079 (4)	0.055 (3)	-0.027 (3)	0.015 (2)	-0.035 (3)
O10	0.230 (12)	0.138 (9)	0.169 (9)	-0.105 (9)	0.009 (9)	-0.091 (8)
N9	0.016 (3)	0.079 (5)	0.137 (7)	-0.012 (3)	0.021 (3)	-0.082 (5)
C26	0.025 (3)	0.086 (7)	0.202 (13)	-0.011 (4)	0.008 (5)	-0.102 (9)
C27	0.082 (6)	0.054 (6)	0.077 (6)	-0.025 (5)	-0.019 (5)	-0.006 (5)
C28	0.087 (6)	0.078 (7)	0.079 (6)	-0.055 (6)	0.027 (5)	-0.046 (6)

Geometric parameters (Å, °)

Cu—N3	1.979 (3)	C13—C14	1.392 (8)
Cu—N3 ⁱ	1.979 (3)	С13—Н13	0.9300
Cu—N1	1.992 (4)	C14—C15	1.375 (6)
Cu—N1 ⁱ	1.992 (4)	C14—H14	0.9300
Cu—O1 ⁱ	2.583 (3)	C15—C16	1.395 (7)
Cu—O1	2.583 (3)	С15—Н15	0.9300
O1—C9	1.427 (5)	C17—C22	1.373 (7)
O1—C8	1.429 (5)	C17—C18	1.382 (7)
O2—N5	1.227 (6)	C18—C19	1.363 (6)
O3—N5	1.227 (6)	C18—H18	0.9300
O4—N6	1.230 (5)	C19—C20	1.440 (7)
O5—N6	1.228 (5)	C20—C21	1.465 (7)
O6—C20	1.244 (5)	C21—C22	1.366 (6)
O7—N7	1.185 (5)	С22—Н22	0.9300
O8—N7	1.199 (6)	O9—C25	1.248 (6)
N1—C7	1.324 (5)	N8—C25	1.306 (6)
N1—C1	1.387 (6)	N8—C23	1.461 (6)
N2—C7	1.342 (6)	N8—C24	1.461 (5)
N2—C6	1.386 (6)	С23—Н23А	0.9600
N2—H2N	0.87 (5)	С23—Н23В	0.9600
N3—C10	1.329 (6)	С23—Н23С	0.9600
N3—C16	1.413 (5)	C24—H24A	0.9600
N4—C10	1.339 (6)	C24—H24B	0.9600
N4—C11	1.389 (6)	C24—H24C	0.9600
N4—H4N	0.87 (5)	С25—Н25	0.9300
N5—C17	1.451 (6)	O10—C28	1.266 (7)
N6—C19	1.451 (6)	N9—C28	1.309 (7)
N7—C21	1.456 (7)	N9—C26	1.463 (6)
C1—C2	1.395 (6)	N9—C27	1.468 (6)
C1—C6	1.399 (6)	C26—H26A	0.9600
C2—C3	1.373 (8)	С26—Н26В	0.9600
С2—Н2	0.9300	C26—H26C	0.9600
C3—C4	1.397 (7)	С27—Н27А	0.9600

С3—Н3	0.9300	С27—Н27В	0.9600
C4—C5	1.374 (7)	С27—Н27С	0.9600
C4—H4	0.9300	C28—H28A	0.9300
C5—C6	1.372 (7)	O10A—C28A	1.255 (8)
С5—Н5	0.9300	N9A—C28A	1.309 (7)
С7—С8	1.490 (7)	N9A—C27A	1.456 (7)
C8—H8A	0.9700	N9A—C26A	1.466 (7)
C8—H8B	0.9700	C26A—H26D	0.9600
C9—C10	1.489 (6)	С26А—Н26Е	0.9600
С9—Н9А	0.9700	C26A—H26F	0.9600
С9—Н9В	0.9700	C27A—H27D	0.9600
C11—C16	1.380 (7)	С27А—Н27Е	0.9600
C11—C12	1.394 (6)	C27A—H27F	0.9600
C12—C13	1.381 (8)	C28A—H28B	0.9300
C12—H12	0.9300		
N3—Cu—N3 ⁱ	180	C14—C13—H13	118.8
N3—Cu—N1	87.55 (15)	C15—C14—C13	121.4 (5)
N3 ⁱ —Cu—N1	92.45 (15)	С15—С14—Н14	119.3
N3—Cu—N1 ⁱ	92.45 (15)	C13—C14—H14	119.3
N3 ⁱ —Cu—N1 ⁱ	87.55 (15)	C14—C15—C16	117.1 (5)
N1—Cu—N1 ⁱ	180	C14—C15—H15	121.5
N3—Cu—O1 ⁱ	106.54 (12)	C16—C15—H15	121.5
$N3^{i}$ —Cu—O1 ⁱ	73.46 (12)	C11—C16—C15	120.9 (4)
N1—Cu—O1 ⁱ	106.14 (13)	C11—C16—N3	109.3 (4)
N1 ⁱ —Cu—O1 ⁱ	73.86 (13)	C15—C16—N3	129.7 (4)
N3—Cu—O1	73.46 (12)	C22—C17—C18	121.3 (4)
N3 ⁱ —Cu—O1	106.54 (12)	C22—C17—N5	119.6 (5)
N1—Cu—O1	73.86 (13)	C18—C17—N5	119.1 (5)
N1 ⁱ —Cu—O1	106.14 (13)	C19—C18—C17	119.2 (5)
O1 ⁱ —Cu—O1	180	C19—C18—H18	120.4
C9—O1—C8	114.0 (3)	C17—C18—H18	120.4
C9—O1—Cu	105.0 (2)	C18—C19—C20	124.5 (5)
C8—O1—Cu	104.8 (3)	C18—C19—N6	115.8 (5)
C7—N1—C1	105.4 (4)	C20—C19—N6	119.7 (4)
C7—N1—Cu	122.5 (3)	O6—C20—C19	124.9 (4)
C1—N1—Cu	131.4 (3)	O6—C20—C21	123.4 (5)
C7—N2—C6	108.1 (4)	C19—C20—C21	111.7 (4)
C7—N2—H2N	124 (4)	C22—C21—N7	117.0 (5)
C6—N2—H2N	128 (4)	C22—C21—C20	123.6 (5)
C10—N3—C16	104.3 (4)	N7—C21—C20	119.4 (4)
C10—N3—Cu	123.2 (3)	C21—C22—C17	119.5 (5)
C16—N3—Cu	132.4 (3)	C21—C22—H22	120.3
C10—N4—C11	107.3 (4)	C17—C22—H22	120.3
C10—N4—H4N	120 (4)	C25—N8—C23	120.4 (4)
C11—N4—H4N	133 (4)	C25—N8—C24	122.9 (4)
O2—N5—O3	123.3 (4)	C23—N8—C24	116.7 (4)

O2—N5—C17	118.3 (5)	N8—C23—H23A	109.5
O3—N5—C17	118.4 (5)	N8—C23—H23B	109.5
O5—N6—O4	122.7 (4)	H23A—C23—H23B	109.5
O5—N6—C19	119.1 (4)	N8—C23—H23C	109.5
O4—N6—C19	118.2 (4)	H23A—C23—H23C	109.5
O7—N7—O8	120.8 (6)	H23B—C23—H23C	109.5
O7—N7—C21	120.5 (5)	N8—C24—H24A	109.5
O8—N7—C21	118.7 (4)	N8—C24—H24B	109.5
N1—C1—C2	131.0 (4)	H24A—C24—H24B	109.5
N1—C1—C6	109.6 (4)	N8—C24—H24C	109.5
C2—C1—C6	119.4 (5)	H24A—C24—H24C	109.5
C3—C2—C1	118.0 (4)	H24B-C24-H24C	109.5
С3—С2—Н2	121.0	O9—C25—N8	124.0 (4)
C1—C2—H2	121.0	O9—C25—H25	118.0
C2—C3—C4	121.0 (5)	N8—C25—H25	118.0
С2—С3—Н3	119.5	C28—N9—C26	119.1 (6)
С4—С3—Н3	119.5	C28—N9—C27	123.2 (5)
C5—C4—C3	122.1 (5)	C26—N9—C27	117.7 (6)
C5—C4—H4	118.9	N9—C26—H26A	109.5
C3—C4—H4	118.9	N9—C26—H26B	109.5
C6—C5—C4	116.4 (4)	H26A—C26—H26B	109.5
С6—С5—Н5	121.8	N9—C26—H26C	109.5
C4—C5—H5	121.8	H26A—C26—H26C	109.5
C5—C6—N2	132.3 (4)	H26B—C26—H26C	109.5
C5—C6—C1	123.1 (5)	N9—C27—H27A	109.5
N2—C6—C1	104.6 (4)	N9—C27—H27B	109.5
N1—C7—N2	112.3 (5)	H27A—C27—H27B	109.5
N1—C7—C8	123.6 (4)	N9—C27—H27C	109.5
N2—C7—C8	124.1 (4)	Н27А—С27—Н27С	109.5
O1—C8—C7	111.3 (3)	H27B—C27—H27C	109.5
O1—C8—H8A	109.4	O10-C28-N9	116.0 (7)
C7—C8—H8A	109.4	010-C28-H28A	122.0
01—C8—H8B	109.4	N9—C28—H28A	122.0
C7—C8—H8B	109.4	C_{28A} N9A C_{27A}	126.2 (9)
H8A - C8 - H8B	108.0	C_{28A} N9A C_{26A}	120.2(9) 1187(8)
01 - C9 - C10	111.0 (4)	C_{27A} N9A C_{26A}	115.1 (8)
01 - C9 - H9A	109.4	$N9A = C^{2}6A = H^{2}6D$	109.5
C10-C9-H9A	109.1	N9A - C26A - H26F	109.5
01 - C9 - H9B	109.4	H_{26D} C_{26A} H_{26E}	109.5
C10-C9-H9B	109.1	N9A = C26A = H26F	109.5
H9A - C9 - H9B	108.0	$H_{26}D_{-}C_{26}A_{-}H_{26}F$	109.5
N3_C10_N4	113.2(A)	$H_{26E} = C_{26A} = H_{26E}$	109.5
N3_C10_C9	113.2 (4) 123.3 (4)	N94 - C274 + H27D	109.5
N4-C10-C9	123.5 (1)	N9A_C27A_H27F	109.5
C16-C11-N4	106.0 (4)	H27D - C27A - H27F	109.5
C16-C11-C12	122.6 (5)	N94_C274_H27F	109.5
N4_C11_C12	122.0(5) 131.4(5)	H27D - C27A - H27F	109.5
117 - 011 - 012 013 - 012 - 011	115 7 (5)	H27E C27A H27E	109.5
C13_C12_H12	122.2	$\frac{112}{112} - \frac{112}{112} - \frac{112}{112} = $	109.5
015-012-1112	122.2	010A-020A-117A	120.0 (10)

C11—C12—H12	122.2	O10A—C28A—H28B	120.0
C12—C13—C14	122.3 (5)	N9A—C28A—H28B	120.0
С12—С13—Н13	118.8		
N3—Cu—O1—C9	15.0 (3)	C16—N3—C10—N4	0.2 (6)
N3 ⁱ —Cu—O1—C9	-165.0 (3)	Cu—N3—C10—N4	177.0 (3)
N1—Cu—O1—C9	107.2 (3)	C16—N3—C10—C9	178.4 (4)
N1 ⁱ —Cu—O1—C9	-72.8 (3)	Cu—N3—C10—C9	-4.8 (7)
01 ⁱ —Cu—O1—C9	-79 (100)	C11—N4—C10—N3	0.0 (6)
N3—Cu—O1—C8	-105.5 (3)	C11—N4—C10—C9	-178.1 (5)
N3 ⁱ —Cu—O1—C8	74.5 (3)	O1—C9—C10—N3	19.8 (7)
N1—Cu—O1—C8	-13.2 (2)	O1—C9—C10—N4	-162.2 (4)
N1 ⁱ —Cu—O1—C8	166.8 (2)	C10—N4—C11—C16	-0.3 (5)
O1 ⁱ —Cu—O1—C8	161 (100)	C10—N4—C11—C12	-177.8 (6)
N3—Cu—N1—C7	76.3 (3)	C16-C11-C12-C13	-2.1 (8)
N3 ⁱ —Cu—N1—C7	-103.7 (3)	N4—C11—C12—C13	175.1 (5)
N1 ⁱ —Cu—N1—C7	-42 (100)	C11—C12—C13—C14	0.9 (9)
O1 ⁱ —Cu—N1—C7	-177.2 (3)	C12—C13—C14—C15	0.1 (10)
O1—Cu—N1—C7	2.8 (3)	C13-C14-C15-C16	0.0 (9)
N3—Cu—N1—C1	-92.3 (4)	N4-C11-C16-C15	-175.4 (4)
N3 ⁱ —Cu—N1—C1	87.7 (4)	C12—C11—C16—C15	2.4 (8)
N1 ⁱ —Cu—N1—C1	149 (100)	N4—C11—C16—N3	0.4 (6)
O1 ⁱ —Cu—N1—C1	14.2 (4)	C12—C11—C16—N3	178.2 (5)
O1—Cu—N1—C1	-165.8 (4)	C14—C15—C16—C11	-1.2 (8)
N3 ⁱ —Cu—N3—C10	153 (100)	C14—C15—C16—N3	-176.1 (5)
N1—Cu—N3—C10	-79.7 (4)	C10-N3-C16-C11	-0.4 (5)
N1 ⁱ —Cu—N3—C10	100.3 (4)	Cu—N3—C16—C11	-176.8 (3)
O1 ⁱ —Cu—N3—C10	174.2 (4)	C10—N3—C16—C15	175.0 (5)
O1—Cu—N3—C10	-5.8 (4)	Cu—N3—C16—C15	-1.4 (8)
N3 ⁱ —Cu—N3—C16	-31 (100)	O2—N5—C17—C22	2.5 (7)
N1—Cu—N3—C16	96.1 (4)	O3—N5—C17—C22	-176.7 (4)
N1 ⁱ —Cu—N3—C16	-83.9 (4)	O2—N5—C17—C18	-175.6 (4)
O1 ⁱ —Cu—N3—C16	-10.0 (4)	O3—N5—C17—C18	5.3 (6)
O1—Cu—N3—C16	170.0 (4)	C22—C17—C18—C19	3.9 (7)
C7—N1—C1—C2	-177.3 (4)	N5-C17-C18-C19	-178.1 (4)
Cu—N1—C1—C2	-7.2 (7)	C17—C18—C19—C20	-0.5 (7)
C7—N1—C1—C6	1.0 (5)	C17—C18—C19—N6	-178.4 (4)
Cu—N1—C1—C6	171.1 (3)	O5—N6—C19—C18	-152.7 (5)
N1—C1—C2—C3	179.6 (4)	O4—N6—C19—C18	27.1 (7)
C6—C1—C2—C3	1.5 (6)	O5—N6—C19—C20	29.3 (7)
C1—C2—C3—C4	-1.5 (7)	O4—N6—C19—C20	-150.9 (4)
C2-C3-C4-C5	0.6 (7)	C18—C19—C20—O6	178.7 (4)
C3—C4—C5—C6	0.3 (7)	N6-C19-C20-O6	-3.5 (7)
C4—C5—C6—N2	-17/8.4(4)	C18—C19—C20—C21	-2.9 (6)
C4—C5—C6—C1	-0.4(7)	N6-C19-C20-C21	174.9 (4)
C7—N2—C6—C5	178.2 (5)	07—N7—C21—C22	167.0 (6)

C7—N2—C6—C1	-0.2 (4)	O8—N7—C21—C22	-10.0 (7)
N1—C1—C6—C5	-179.0 (4)	O7—N7—C21—C20	-13.8 (8)
C2—C1—C6—C5	-0.6 (7)	O8—N7—C21—C20	169.2 (4)
N1—C1—C6—N2	-0.5 (5)	O6-C20-C21-C22	-178.2 (4)
C2-C1-C6-N2	178.0 (4)	C19—C20—C21—C22	3.3 (6)
C1—N1—C7—N2	-1.1 (5)	O6-C20-C21-N7	2.6 (6)
Cu—N1—C7—N2	-172.3 (3)	C19—C20—C21—N7	-175.8 (4)
C1—N1—C7—C8	-179.9 (4)	N7-C21-C22-C17	178.8 (4)
Cu—N1—C7—C8	8.9 (6)	C20-C21-C22-C17	-0.3 (7)
C6—N2—C7—N1	0.8 (5)	C18—C17—C22—C21	-3.5 (7)
C6—N2—C7—C8	179.6 (4)	N5-C17-C22-C21	178.5 (4)
C9—O1—C8—C7	-94.6 (4)	C23—N8—C25—O9	178.3 (5)
Cu—O1—C8—C7	19.7 (4)	C24—N8—C25—O9	-0.3 (7)
N1—C7—C8—O1	-21.8 (6)	C26—N9—C28—O10	0.4 (13)
N2	159.6 (4)	C27—N9—C28—O10	-179.7 (9)
C8—O1—C9—C10	94.0 (4)	C27A—N9A—C28A—O10A	178 (3)
Cu—O1—C9—C10	-20.2 (4)	C26A—N9A—C28A—O10A	-1(5)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2N···O6 ⁱⁱ	0.87 (5)	1.95 (4)	2.709 (5)	145 (6)
N2—H2N···O5 ⁱⁱ	0.87 (5)	2.41 (5)	3.104 (6)	138 (6)
N4—H4N…O9 ⁱⁱⁱ	0.87 (5)	1.92 (2)	2.753 (6)	162 (5)
• • • • • • • • • • • • • • • • • • •				

Symmetry codes: (ii) -*x*+1, -*y*, -*z*+2; (iii) -*x*+1, -*y*+1, -*z*+1.

